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1. Introduction 

Applications [1-4] of molecular orbital theory to the calculation of the 
electronic structure of infinite systems are conventionally based on the use of 
Bloch's theorem [5]. The crystal or polymer SCF (Self Consistent Field) matrix 
equation is partially factorized by using the translational symmetry of the lattice 
to construct symmetry adapted orbitals. These orbitals are characterized by 
wave-vectors, k, which label the irreducible representations of the translational 
subgroup. The application of this method to one-dimensional polymers and 
crystals is relatively straightforward since the wave-vector may be treated as a 
scalar quantity under these circumstances. However, in the case of a three-di- 
mensional crystal, this approach is rather more complicated. Since k must now 
be treated as a vector, with three independent components, a large number of 
values must be sampled in reciprocal space in order to achieve an acceptably 
accurate representation of an infinite three-dimensional crystal. Another, more 
subtle, problem is brought out by the group theoretical result first derived by 
Bouchaert, Smoluchowski and Wigner [6]. The factorization of the Fock equations 
obtained by transforming to translational-symmetry adapted basis orbitals is 
substantially less effective in the case of three-dimensional crystals. In general, 
a wave-vector, k, characterizing an irreducible representation of the translational 
subgroup is related, by the unit cell symmetry elements, to a number of other 
wave-vectors. A set of wave-vectors related in this way is called a star [6]. When the 
equations for the crystal are block diagonalized by the transformation, the sizes 
of the diagonal blocks are determined by the numbers of symmetrized orbitals 
associated with stars rather than with individual wave-vectors. Finally, from a 
physical point of view, these symmetry adapted orbitals do not provide the most 
appropriate starting point for calculations on molecular crystals. The known 
molecular character of these systems suggests that the electrons in the lattice are 
strongly localized on the molecules that constitute the crystal. The symmetry 
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adapted orbitals, on the other iaand, describe the electronic structure in terms 
of completely delocalized electrons. Thus, while these orbitals are suitable for 
theoretical studies on metallic crystals, their use for studies on molecular crystals 
must lead to excessive and unnecessary computing. 

Recently, an alternative approach to the theoretical study of three-dimensional 
molecular crystals was reported [7-12], which avoids all of the problems discussed 
above. The difficulties associated with wave-vector dependent crystal orbitals are 
side-stepped by solving the SCF equations for the crystal density matrix directly. 
The molecular character of these crystals is used to advantage through the appli- 
cation of SCF perturbation theory [ 13] and matrix partitioning methods. Specifi- 
cally, the theory treats a molecular crystal as a lattice of properly oriented but 
non-interacting molecules to the zeroth order approximation and then allows for 
intermolecular interaction by means of high order SCF perturbation theory [ 13]. 
An important feature of this theory is that it can be applied not only to regular 
crystals, but also to the calculation of the properties of lattice molecules in the 
vicinity of lattice defects or crystal surfaces. 

The original derivation of this theory was within the framework of an ap- 
proximate molecular scheme. We now rederive it in terms of non-empirical single 
determinant molecular orbital theory. 

2. Theoretical Section 

In this section we discuss a solution of Roothaan's SCF matrix equation [14] 
for a molecular crystal. We begin by introducing the SCF matrix equations in the 
conventional notation suited to the theory of finite molecules. This notation is 
then adapted to the present application through the introduction of matrix 
partitioning and, by invoking the crystal's translational symmetry, through the 
introduction of lattice sums into the Fock operator. Finally, the intermolecular 
perturbation is introduced, and a method is presented for calculating the crystal 
density matrix. 

We begin with Roothaan's SCF matrix equation for the crystal: 

F C = S C E  O) 

where F is the Fock matrix for the entire crystal, referred to a basis set of atomic 
orbitals centered on the atoms of all lattice molecules. C is the coefficient matrix 
for the expansion of the crystal orbitals in terms of these atomic orbitals, S is the 
overlap matrix and E the orbital energy matrix. The energies on the diagonal of 
this matrix constitute the band structure for the crystal. The crystal orbitals are 
normalized through the matrix equation 

d.sc  = 1. (2) 

The crystal density matrix, P, is given by 

o c ~  

Puv = 2  Z Cu~C~i (3) 
i 
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where # and v label atomic orbitals, and the summation over i includes all occupied 
crystal orbitals. The crystal Fock matrix is given by 

F = H  +G (4) 

where the Hamiltonian matrix, H, is given by 

H.v = (#l - �89  V21 v) - 2 Zp(#lR;  11 v) (5) 
p 

Zp is the nuclear charge on the flth atom, and the summation over fl includes all 
the atoms in the crystal. 

CUl - �89  V2I v) = - �89  J" )~.(1) V 2 )~.(1)dz~, (6) 

CUlR; 1Iv) = I Xu(1) R ; ?  iG(1) dz~, (7) 

where we have assumed that all the atomic basis function, X, are real. The electron 
repulsion matrix, G, is given by 

G,~ = 2 2  La{CUv I~,~)-�89 (8) 

where the double summations over a and 2 are over all atomic orbitals in the 
crystal basis set. 

(#v I a2) = I I Zu(1) Zv(1) r[-2 ~ Z,(2) Za(2) dZl dz2. (9) 

The method to be developed here allows calculation of the crystal density 
matrix rather than the crystal orbitals. This matrix is built up block by block by 
calculating density submatrices. Considerable clarification of this procedure can 
be achieved if it is assumed at the outset that the crystal basis set has been ordered 
so that all atomic orbitals belonging to a given molecule occur as a group in the 
list of basis functions [8, 11 ]. Under this arrangement all of the matrices occurring 
in the theory can be partitioned into submatrices. Those submatrices found along 
the diagonal are termed intramolecular because they are composed of matrix 
elements between atomic orbitals associated with a single molecule [8, 1t]. 
Submatrices from the off-diagonal positions, on the other hand, are termed 
intermolecular because their elements are between atomic orbitals centred on two 
separate molecules. If we assume that there is only one molecule per unit cell, a 
single label is sufficient to identify a given lattice molecule. Accordingly, a submatrix 
of a given crystal matrix, M, may be denoted by [11]: 

rWM = (rwM.v) (10) 

where rwM~ is the matrix element between the #th atomic orbital of the molecule 
in the T th unit cell and the v th orbital of the molecule in the W th cell. It is important 
to recognize the vector character of these unit cell identifiers. Although this 
notation can readily be generalized [11] to include the many molecule complex 
unit cell, such a generalization would only obscure the presentation. 

The Hamiltonian submatrices are written as 

u . o .  

TWH.~ = CuT I -- �89 V 2 I vw) -- ~ v~,xzaCuT I XR; 1 I Vw) 
x i~ 

(11) 
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Fig. 1. Relative vector labels for molecules in a crystal lattice. Here T is the reference molecule 

where X is summed over all unit cells (molecules), fl is summed over all atoms 
of the X th molecule, and #r  is the/~th atomic orbital centred on the T th molecule. 
At this point, it is convenient to begin the introduction of the crystal's translational 
symmetry. Because of this symmetry, any two submatrices of a given matrix, M, 
will be equal if the difference between their unit cell identifiers are equal: 

XrM = rWM (12) 
if 

Y - X = W - T .  (13) 

Such submatrices may be said to be translationally equivalent. Thus, in order to 
avoid duplication, it is appropriate to identify the sub-matrices by means of 
relative vector labels, such as those shown in Fig. 1, in preference to the absolute T, 
W labels. Moreover, since all the lattice molecules are symmetry related, the X label 
on Xzp is redundant; it may therefore be discarded and the summation over fl 
referred to an arbi trary lattice molecule. Under these conditions, the order of 
summation can be interchanged and the Z taken out of the X summation in 
Eq. (11), to permit the last term to be expressed in terms of a lattice sum, V: 

~ = (/-tr I - � 89  V21 vr+ o) - Cid, o Y" Z a ( ~ r  I rR• 11 vr) - ~ (14) 

where Tlabels an arbitrary lattice molecule. The vector 0 is that shown in Fig. 1, 
d (diagonal) corresponds to the null vector (~ = 0) and 6 is the Kronecker 6. 

eV.~= y Za~'(#rl~e;llvr+e). (15) 
B 

is the vector shown in Fig. 1, and the prime on the summation is to omit the 
origin term ( = 0 if Q = 0. 

Similarly, the G submatrix is given by 

~:WG.~= Z Z Z Z  x'LA(~vwl,rx,~O-k(m.,~vl,r,:Vw)} (16) 
X Y a 2 

where the summations over o- and Z are over basis functions of molecules X and Y, 
respectively. The G and P submatrices can also be written in the relative label 
notation introduced above and the summations over X and Y equivalently 
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replaced by summations over ~ and ~, Fig. 1. Applying the translational symmetry 
argument to the expression in the curly brackets of Eq. (16), we find that the 
integrals depend only on the three vectors, ~, ~, and �9 shown in Fig. 1. Thus, we 
introduce the following notation: 

~ (~' ~) = { ( ~ r v w l a x  ;~r) - �89 ~x Vw)} (17) �9 z *l/~ V :O-), 
so that 

lvi/2V :0"~ 

Noting that ~P~z is independent of if, we may write 

The last summation in (19) may be considered as a separate lattice sum, ~F(~):,x: 

where the prime excludes ~ = 0 if both Q and z = 0. The electron repulsion submatrix 
may now be written: 

"Guy = 6a, Q Z Z np.~ aM(ui,s + Z Z E ~P~ 'Fi:):,~z - (21) 
a 2 v tr ,~ 

3. Definition of the Fock Perturbation Submatrices 

We begin by expanding the SCF matrix equation for the crystal in a perturbation 
series, 

(F (~ + F (1) + F (z) +...) (C (~ + C (1) + C (2) + . . . )  
(22 )  

= (S  (0) -]- S (1) + S (2) . .~ . . . )  ( C  (0) -~- C (1) -~ C (2) -~_. . . ) .  ( E  (0) -~- E(1) + E (2) §  

which is solved by the method given in the Appendix. In order to take advantage 
of the molecular character of molecular crystals, the zero order solutions are 
taken to be the molecular orbitals of correctly oriented but hypothetically non- 
interacting lattice molecules [8, 11]. Accordingly, both F (~ and S (~ are block 
diagonal [8, 11]. The diagonal blocks are the appropriate free molecule matrices 
from each individual lattice molecule. Thus, unless ~ = d, both OF(~ and ~176 
are zero. The diagonal zero order Fock submatrices are given by 

aF(u~ ~ Za(~T[TR;alVT)+ ~ZaP(~~ (23) 
~r 2 

T labels an arbitrarily chosen lattice molecule, and alp(O) the density matrix for 
an isolated lattice molecule, is a zero order density submatrix from the diagonal 
ofp(o). 

o c t  

a (o) TC(~ rC(~ (24) 
i 

Note, p(o) is block diagonal as are all other zero order matrices. The summation is 
over the occupied orbitals of the T th molecule, vc(u~ is the coefficient of the ]~th 
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atomic orbital in the ith molecular orbital localized on the T th molecule to the 
zeroth order. 

We now consider the definition of the perturbation operators to all orders. 
The form of the full crystal Fock and Hamiltonian operators and our choice of 
zero order solution allows considerable latitude in the definition of the perturbation 
operators. In order to optimize the convergence of the perturbation expansion, 
we include two contributions in the first order Fock operators. The first is the 
static field arising from the zero order charge distribution in the lattice. The 
second is the first order polarization field arising from the effect of the static 
field on the molecules. Thus, by definition, 

~ (1 - 6d, O)(#r [ -- �89 VZlvr + o) - eV,, + Z Z alp(o) OF(ual~x 
2 

(25) 

Under this definition of F t~ and F ~) all Hamiltonian matrix elements are ac- 
counted for, and so QHtn)= 0 if n > 1. Thus, all remaining higher order Fock 
submatrices contain only polarization terms. Therefore, the n :h order Fock 
submatrix is given by: 

~F(u~ ) = 6d, Q E E dp(~) OM(f;..~) + E E E ~f(~"~) ~ (26) 
o 2 ~ a 2 

4. Calculation of the Crystal Density Matrix 

The perturbation equation, Eq. (23), is solved for p(1) and p(2) by the method 
derived in the Appendix. It is assumed that p(0) has already been determined by 
means of a conventional SCF calculation on a chosen reference lattice molecule. 
The final density matrix is given, of course, by the sum of p(o), p(1), and p(2). 
The crystal density matrix cannot be handled as a single entity, and so the ex- 
pressions for p(1) and p(2) are partitioned into submatrix equations. Each resulting 
density submatrix equation is solved separately, but not independently. The 
density matrix for the crystal is, thus, built-up block by block through the calcu- 
lation of density submatrices. 

The crystal symmetry drastically reduces the number of submatrices required 
for the complete specification of the crystal density matrix, since only translationally 
inequivalent submatrices need be calculated. In the present case of one molecule 
per unit cell, all that is required is a single intramolecular submatrix and one set of 
intermolecular submatrices, involving an arbitrarily chosen reference molecule 
and the remainder of the lattice. Fortunately, relatively few intermolecular 
matrices will have to be calculated since, for molecular crystals at least, op will 
tend strongly to zero as [Q[ increases. The presence of any point group symmetry 
in the lattice would further reduce the number of submatrices to be calculated. 

Expressions for the first and second order density matrices are given in the 
appendix. These equations are now partitioned into submatrix equations. We 
start with the first order density matrix, P(~): 

oec  a l l  

p~a) 2 ~ ~,~(o) (27) = Z ~ k i ~ ' ~ i  t'~(O) g'~(O) (~(0))  ~'~vk "~- ~'~#k ~Jvi J "  
i k 
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The summations in the unpartitioned form of the equation are over crystal orbitals. 
If both i and k are occupied 

~ [ k i  I r  (28) "~- - -  2 ~ k i  

and if i is occupied and k vacant 

9"Ikl = Oki~'(1) /(r -- ~(k0)). (29) 

Here 
~ ( 1 )  ] ~ ' ( 1 ) -  ~'(1)e(O) (30) 

ki = ~  ki ~'ki t'i " 

Fk(~ ) and S(k~ ) are defined in the Appendix. 
The full crystal density matrix may be partitioned into submatrices by making 

use of the prescribed ordering of the basis set and the block diagonal form of 
the C (~ matrix. The submatrix between molecules T and W is given by 

OeCT a l lw OCew allT 
= Tc(O) Wt~(O) (31) TWp(1) 2 2 2 W T ~ [ k i  -12i *,.~vk + 2 Z Z T W ~ k i  T p ( O ) W ( ' ~ ( O )  - - f ry  ~'-'ttk v v i  " 

i k i k 

The orbital summations in this equation are now over molecular orbitals associated 
with either molecule W or T. WTg.1 is the W, T th submatrix of 9.1. At this point we 
can again involve the crystal translational symmetry. As discussed above, it is 
clearly unnecessary to calculate the density submatrices for every value of T and 
W since they depend only on r the difference between T and W. Thus, 

or all 

~P~('~) = 2 Z Z (~Nk, C(u ~ C~(~ + QNkl C(u ~ C~~ �9 (32) 
i k 

The summations are now over the molecular orbitals of an arbitrary lattice 
molecule. If, for example, k and i label vacant and occupied orbitals, respectively: 

= (0~(') ~c(') e!o))/(elo)_ e~o)) (33) r W ~ [ k i  O~[k i  "~- k a ki - -  ~"ki 

Since, in the present case, all lattice molecules are equivalent, labelling of the 
zero order orbital energies with regard to their molecular origin is unnecessary. 

~ E E C~~ ' C~ ~ ~F(ulv ) (34) 
# v 

where ~F,(I~ ) is defined in Eq. (25). Once more the equivalence of the molecules 
makes labelling of the molecular orbital coefficients with regard to their molecular 
origin unnecessary. The summations over # and v are over all the atomic orbitals 
associated with a single molecule in the lattice. Note, 

~~ = wrgl . (35) 

Equation (32), in conjunction with Eqs. (28) and (29), constitutes the first order 
solution to the crystal SCF matrix equation. 

The second order density matrix is given by 

oec all oct vac vac 

= t-(o) C(oh + 2 2 Z ~, Ak, Au ,~(0) t-(o) (36) p(2) 2 ~, ~ ~3 tC(~ C (~ + "Jug -~i , gv  ki I I~i vk  "~#k *'Jvl 
i k i k l 
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where, fl3ki is defined in the appendix. On partitioning (36) into density submatrices, 
making use of the block diagonal form of C (~ we find 

o c c w  a l l T  OCCT a l l w  
TWp~Z~ ) = 2  E E rW~BklrC(f) Wc~~ + 2 E E WT~BkiWC(~O) rc~O) 

i k i k 

. . . .  o e e x  v a c T  v a c w  ( 3 7 )  

+ 2 Z 2 Z ~, TXAkiWXAuTC~~ 
X i k i 

The appearance of a triple summation in the expression for p(2) leads to a lattice 
summation, Z~c "c', in the final partitioned expression for the density submatrix. 
Once more the notation is simplified through the introduction of the relative 
unit cell identifiers of Fig. 1 

o c t  all  

QPu(~ )-- 2 Z Z (O~Bk, C(u ~ C(~ ~ + ~ki C(u ~ C~ ~ 
i k (38) 

oec  vac  v a c  

r~(o) ~(o) + 2 E E E E ~Aki (~-e)Au "~,k "~t �9 
i k l 

As the lattice molecules are all the same, it is unnecessary to label the zero order 
molecular orbitals with respect to their molecular origin. Fortunately, for molecular 
crystals, at least, the geometry of the molecular packing in the crystal is such that 
very few terms need be included in the ~ summation [11]. 
From the Appendix, if both i and k label occupied orbitals 

[ . . . .  11 WX~(1) XTe(1) ] e~Bk, = --�89 Z , Z WX A, rX Akl - Z :u rag l" (39) 
X L I  l 

X sums over all unit cells in the crystal. We have chosen to set S(2)= 0. Equation 
(39) may be written 

(~-e)Aa'Ak,- ~('-e)SI~)(SI~) 1 (40) 
g k t  l 

where the vector ( is defined in Fig. 1. Similarly, if i is occupied and k vacant, 
from Eq. (48 A) of the Appendix, 

o c e  

~ = + f v  ki/t i -- k , I/_~l/,~(i'(e-OAu - 2 ~Agt'O-Oq~ll) 
i 

(41) 
MI 

(o-o~(I)~]l(o(O)_ 
OCt 

- __, o , ,  ) l , ,~  4~  - E, 

Equation (38) in conjunction with Eqs. (40) and (41), constitutes the second order 
solution to the crystal SCF equation. 

Assuming that all of the required integrals and lattice sums for the problem 
have been evaluated, the method of calculation is as follows. The first step is the 
solution of the zero order equation for an arbitrary lattice molecule to obtain the 
zero order molecular orbitals and orbital energies. The next step is the calculation 
of all the required first order density submatrices, Eq. (32). These are solved as 
coupled equations, since the calculation of any given ~F (*) requires all nonnegli- 
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gible ~po). Each ~p(1) that contributes to the OF (1) submatrices is calculated from 
an intermolecutar density submatrix equation. Even if density submatrices 
involving next nearest neighbour molecules are calculated, only about eight 
equations have to be solved [11]. Moreover, the presence of an n-fold axis in the 
crystal point group would reduce this number by a factor of n. Once the first 
order equations have been solved the S (1) submatrices are used in conjunction 
with the resultant A and ~(1) submatrices to calculate the constant, non-iterative, 
components of the U z) submatrices. Completion of the p(2) calculation again 
requires the iterative solution of several matrix equations, Eq. (38). 

It is important to realize that the density matrices calculated by the above 
method explicitly include multimolecular interactions through the presence of the 
Coulomb lattice sums in the F (") submatrices and three molecule interactions 
through the presence of lattice sums in the expressions for 23, Eqs. (40) and (41). 

The energy per mole, W, of the crystal may readily be calculated from the 
various submatrices as follows [11]. Let W' be the extensive energy of the crystal, 
then 

1 F,~) nuclear repulsion, (42) 
# v 

= �89 2 Z Z r Z w TWpu.(rwH.. + rWF.O + N.R:, (43) 
T W ~z v 

where N.R.' is the total nuclear repulsion energy. 
If N is the number of unit cells, then applying the translational symmetry 

argument, W' = �89 N • ~ Z ~ + QFu~) + N.R.' . (44) 
Q # v 

Dividing by N to obtain the energy per unit cell, we find 

W = �89 Z Z Z oP,~(aHu~ + ~ + N.R. (45) 
~o ,u v 

To estimate the crystal binding energy per molecule, we calculate the average 
energy per molecule in the crystal and subtract from it the energy of an isolated 
molecule, given here by 

�89 Z Z ap(o)(all(o) + aF(O) ) + n.r. (46) 
# v 

where n.r. is the nuclear repulsion energy for a single molecule. 
The perturbation series for the average energy per molecule in the crystal is 

simplified by the block diagonal form of the zero order matrices and by the fact that 

Z Z QP(u~ ) ~ ~ O. (47) 
r v 

The final result for the binding energy per molecule, A W, is 

A W =  �89 E E {aP(u~ + aF(~, ,} + aP(u~)all(~ 

+ dp(~) {anlt) + dFi~) } + dp(uO v, ,~Fi2) + ap(u2)(en(uO, + aF(O,)} (48) 

+ �89 Z Z Z [ePilv)(ell(iv ) + ~ + ~176 )+ ~ + ~ OF(2)] + N.R. 
Q l~ v 

where N.R. now only includes intermolecular repulsion terms. 



10 s.F. O'Shea and D. P. Santry 

Although the calculations discussed here have been taken to the second order, 
the last terms in Eq. (48) combine first and second order contributions to yield 
terms that are overall of the third order. This procedure would be inconsistent in 
the calculation of molecular interaction constants, for example, but it is acceptable 
in the present application since the choice of perturbation is, to some extent, 
arbitrary. The inclusion of the last terms is recommended since studies with 
perturbation calculations based on semi-empirical MO theories showed that 
their inclusion improved the performance of the theory to the point where it 
could be confidently employed for the calculation of molecular configurations [7] 
within dimers. 

As calculated in Eq. (48), the binding energy contains all of the interactions 
included in the single determinant SCF theory. Thus, the present method includes 
contributions from intermolecular electron exchange, intermolecular charge 
transfer, together with the major terms which can be derived from classical 
electrostatic theory. The latter include direct multipole-multipole interactions 
together with the corresponding polarization forces. Dispersion forces, which 
arise from Coulomb electron correlation, are not included and must be considered 
separately. The theory can confidently be applied to hydrogen bonded and charge 
transfer crystals. Useful insights can also be obtained for molecular crystals where 
dispersion energies make a substantial contribution to the binding energy. 

5. Discussion 

A method has been developed in the previous section, for solving Roothaan's 
SCF matrix equation for an infinite molecular crystal. This approach brings 
simple molecular crystals within range of ab initio molecular orbital calculations. 
It also presents an opportunity to study intermolecular forces within physically 
realizable systems that are available for experimental study. These calculations 
should also provide valuable insight into the electronic processes within molecular 
crystals. 

The above theory has been successfully applied at the semiempirical level to 
several molecular crystals [8-12]. The convergence of the perturbation series was 
monitored by calculating the complete third order together with part of the 
fourth order energy [11]. These calculations suggest that the prOcedure re- 
commended here, the calculation of P to second order with the energy taken 
partially to third order, should be adequate for most simple molecular crystals. 
Crystals composed of unusually strongly interacting molecules, such as those 
postulated for charge transfer crystals [15], may require the calculation of p(3) 
in order to obtain acceptably accurate results. But even here, the second order 
calculations should provide extremely valuable results at the semi-quantitative level. 

The program [16] available for the semi-empirical version of the theory 
should greatly facilitate the implementation of the ab initio theory. The solution 
of the perturbation equations for the lattice molecules is the same in both theories, 
apart from changes in the definitions of ~, ~,  and ~3. Thus, the existing computer 
program, PREDEN/CRYDEN [16], could be adapted to ab initio calculations by 
the incorporation of the necessary integral packages and the modification of the 
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Fock submatrix algorithms. The overlay structure of the program would lend 
itself to this process. 

Finally, the theory developed here assumes an ideal symmetry for the crystal 
lattice. However, should this symmetry be lowered or completely removed by the 
presence of a lattice defect or the proximity of a surface, the general method of 
approach would still be valid�9 The effect of each reduction of symmetry is to 
increase the number of distinguishable density submatrices that must be calculated. 
A method for treating this problem has been discussed by Crowe and Santry [17] 
for the semi-empirical version of the theory�9 

Appendix 

We briefly review here the derivation of the first and second order contributions 
to the density matrix as calculated by SCF perturbation theory. We start with the 
Roothaan SCF matrix equation [14], 

F C = S C E  (1A) 

which is expanded in a perturbational series, here limited to the second order: 

(F (~ + F (1) + F (2) + ...) (C (~ + C (1) _[_ C (2) _[_.�9 �9 = (S (0) + S (1) + S (2) _~_.. �9 
(2A) 

�9 (C (0) .3i- C (1) -~- C (2) _[_...) (E (~ + E (1) + E (2) q_. . . ) .  

Collecting terms by order we find, up to the second order 

F (~ C (~ = S (~ C (~ E (~ , (3A) 

F(~)C(~ + F(~ (1)= S~~176 + S(~176 + S(1)C(~ (~ , (4A) 

F (2) c(O) + F (~) C(~) + F (~ C (2) ~_ S (0) C (0) E (2) _~_ S (0) C (2) E (0) .3i- S (2) C (0) E(O) 

+ S (~ C(~)E (~) + S (1) C(~ (1) -k S (1) C(I)E (~ . (5A) 

If these equations are solved subject to the constraint [14], 

CSC = 1, (6A) 

E can be considered diagonal to all orders. Expanding (6A) in a perturbation 
series we find 

~(o) S(O) C(O) = 1, (7A) 

C(~176 C (1) ~- C(~ (0) ~- C(1)S(~ (0) = 0 ,  (8A) 

c(O)s(O) C(2) -[- C(o)s(2) C(O) _ ~_ C(2)S(O) C(O) .3 V C(o)s(1)C(1).q- C(1)S(1) c(O) 

+ C(1)S(~ (1) = 0. (9A) 

It is assumed that Eq. (3A) has been solved, so that F (~ C (~ S (~ and E (~ are 
all known. Equation (4A) is solved by expanding C (1) in terms of the complete set 
C (~ 

C (1)= C(~ (10A) 

where A is a matrix of mixing coefficients. Substitute for C (~) in (4A) and multiply 
to the left by ~(o): 

F (~) + E(~ = E (~) + A E  (~ + S(i)E (~ (11A) 
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where F (~) and S (1) are now referred to a basis of zero order molecular orbitals, 

(1)  r  ,~,(I ) C ( 0 )  i/ = Z Z  (12A) 
,u v 

Fg.) = ~ x~ C(q) F(~) C(~ (13A) t j  . ' ~  ~,u,t - /~v - -v j  
# v 

Define a new F matrix, Eq. (14A) 

F ( ) - S t 'E (14A) ~ ( n )  = n "n~ (0)  

and substitute into (11A): 

AE(O) _ E(O)A = _ E(1) + ~(1). (15A) 

Also, i fE  (1) is to be diagonal, from Eq. (8A), 

A + A =  - S  (a). (16A) 
From (15A), if i # j  

A i j  = q~ij(1)/(e~O _ ~0) (17A) 
and from (16A) 

i ~(i) (18A) A i i  = - -  ~ ~ i i  " 

Now that A has been derived, p(1) can be calculated: 

occ 

p(t) = 2 ~ (c  (~ c (~)_~ + c (~) c(~ 
~ - - # i  v ,u i  - - v i  ] 

i 

oec al l  

= 2 ~ ~, Aki (C(~ r.(o) j_ r~(o) C(o)) 
~ v l t i  ~"~vk - -  ~"Qzk ~ v i  ~ �9 

i k 

(19A) 

This equation is singular if the zero order solution contains degenerate orbitals. 
However, by making use of Eq. (l 6A), it can easily be reduced to a non-singular form: 

oc t  vac  oc t  occ  

p(1) 2 ~, ~ Akl (C(~ r(o) rXo) q(1) rXo) (20A) -,v , - , i  '~vk + ~uk C~ ~ --2 Z Z "~kC'(0) ~ k i  ""# i  �9 
i k i k 

This can be conveniently expressed, for later use, as 

occ al l  

_P(a)u, = 2 Z Z 9Jki(C~(~ "~ukF(0)C(0))_~i. (21A) 
i k 

where, if both i and k are occupied 

9 ~ k i  = - -  21 L'kiC(i ) (22A) 

and if i is occupied and k vacant 

~ki = .~(1)Uo(0) e(k0)). (23A) O k i  /[c ' i  - -  

Note, the 9.I matrix is neither symmetric nor skew symmetric. Equation (21A) is 
for all practical purposes the solution to the first order equation. It has to be 
calculated iteratively since the evaluation of p(1) requires ~(1) which itself requires 
p(1) through F (1). The second order equations are solved in much the same way. 
C (2) is expanded in terms of C(~ 

C(2)= C(~ (24A) 
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This is substituted into Eq. (5A) which, on multiplying to the left by C, yields 

E (~ B - BE (~ = - 5 (2) - ~(1)A + E (2) + AE (1) + S ( 1 ) ~  (1) . (25A) 

The following equation, derived from (i 5A), has been used in the derivation of(25A). 

S(1)E (1) + S(~)AE(~ S(I)~ (1) + S(1)E(~ (26A) 

The matrices in Eq. (25A) are, as for the first order equation, referred to a basis of 
zero order molecular orbitals. The second order ortho-normality equation, 
(9A), yields directly on substitution for C (I) and C(2): 

B - } - / ~  = - S ( 2 )  - S ( ' ) A  - A S  (1) - .,~A. (27A) 

Noting, from Eq. (16A), that 

A.,{ = - A A  - A S  (1) , (28A) 

equation (27A) can be written in the more useful form 

B +/~ = - S (2) --~ S ( 1 ) S  (I)  - -  AA. (29A) 

IfB is constrained to satisfy this orthogonality condition E (2) c a n  be assumed to be 
diagonal. Thus, for k vs i, from (25A) 

and 

~.(:)/:o(O) do))+ [~ (1) r .(1)]/:o(O) o(o)~ Bki O k i  / t ~  = (~kt A l i - -  ~'kt o~i  , - -  Aki ~u J/t~ - -~k , ,  (30A) 

'dJil ~'Jli Bii-~ --21~ l - A u A i l )  (31A) 

Now that B has been derived, the next step is to calculate the second order change 
in the density matrix, p(2) 

oct 

]0(2) __ 2 ~ ~C~ ~) + C~f ) C(. 2) + C (2) C (0)1, 
~ v  - -  t ~ # t  ~ v t  - v t  ~ # i  ~ v i  J 

i 
(32A) 

which, on substituting for C ( 1 )  and C ( 2 ) ,  becomes 

o e e  a l l  a l l  o c t  a l l  

Pu 2) = 2 ~ ~ ~ A A F(o)t-(o) ,, --m)~(o) a_ 2 V V f'(O) F'(O)I 
D k i [ s  t"vk ~ x'~#k "~vi 1 '  

i k l i k 
(33A) 

This expression is singular and thus cannot be used for calculations where the 
zero order orbitals are degenerate. These singularities, however, can be easily 
combed out by the following manipulations. Consider the two contributions 
to p(2) in Eq. (33A) separately, taking the first term first: 

OCt OCC OCt OCC VaC OCt OCC OCC v a c  o c t  v a c  vacq ~ ( 0 )  

F i r s t t e r m = 2 [ ~ + ~ + ~ + ~ . ~ ] A k i A u C h k C ~  ~  (34A) 
�9 " i k l J  

Of all these terms only the fourth is non-singular. The objective is to find contri- 
butions from the second term of (33A) which will either cancel or combine with 
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terms in (34A) to yield a final overall non-singular expression. 

oc t  vac oc t  oc t  

Second term = 2 Z Z Bk'gik + 2 ~ Z (B,k + Bk') "~uit'(O)r(O).~,k (35A) 
where i k i k 

gig = C(~~ C~~ + C(f) C(~ ~ . (36A) 

Using Eq. (29A), Eq. (35A) may be written as 

dec vac  dec dee / a l l  

2 Z E Bkig'k + 2 2 2 ~,kC'(o)r'(~ r162 _ r 
i k i k 

(37A) 
oc t  oc t  vac  oc t  occ  oc t  

- 2 Z Z ~ a a c(o)r,(o) a ~ r~(o)r~(o) 
i k l i k l 

The last term of (37A), which is singular, cancels the first term of (34A). All the 
remaining terms of (37A), save the first, are non-singular. The second and third 
terms of Eq. (34A) can be combined and rearranged to give 

dec vac oct 
2 ~ Z Z AktAi,g,k (38A) 

i k l 

which is combined with the remaining singular term, the first, of Eq. (37A): 

2 ~ 2 Oik Bki + AklAil . (39A) 
�9 l 

Expand Bki using Eq. (30A), Eq. (40A): 

o ~ v ~  [ ~(k 2 ) /all ~ or l] 
2 g i k  - . ( O i - - o ( O )  + O k l  ~ , ,  - -  ~'kt ou ]/t~, e(k ~ + Ak,A, �9 

i k ~i  - -  ~  l 

(40A) 

Combine the occupied component of the second term with the fifth term. Expand 
all the A's using Eq. (17A). 

o ~  q~(k~)Au +Ak,Au f "~(i) ~-(1) ~(1)o(o) ]~(1) K,(1)o(o) J O k l  - - l i  - -  ~ l i  ( ' i  - - i l  - -  ~ i l  ~  

§ /o(o) o(O) [(~io)_4o) (~Io)_ 40)) (4o)_4o)) 
t ~  - -  ~  l " 

+ (1 = i) terms. (41A) 

The l = i term has to be treated separately, as may be seen from Eq. (18 A). Collecting 
terms in (41A) 

dee A 75(1) o c t  
Z~Lkl O l i  ~ J k l  w i t  

= - Z '  Z '  ~.(1)~(~ 

/~(o) ~ (e}o) _ e(kO)) {- (I = i) terms�9 (42A) 
l (f'i -- ('k J l 

Explicitly including the l -- i term, and completing the summation in Eq. (42A) yields 

dec A .~ dec .r A .~c~-(1)  c'~(1)K,(1) 
Z~-k lOl i  O k l  ~ i l  Z X k i O i i  O k i  ~  

,o,'o(~176 ( # ' - # ' )  + ( # ' - r  + ( # ' - # ' )  
c.r.(1 ) i f ( l )  ~ ( 1 )  ~,(1) 

I O k i  x'Jii 1 O k i  JJi i  

( ~ ? ) _  4o))  ~ (~o) _ 40))  �9 

(43A) 
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Noting that 

e ! . • )  = ~!.~) (44A) I t  ~ t t  

the third term in (43A) cancels the third term in (40A). Finally, the fourth term is 
cancelled by the fifth and sixth terms. Thus, collecting terms, Eq. (40A) equals 

. . . . . .  . . . .  l ,a, ) 
2 . Oik e.!o~ Ak,~l~ ) + ~ ~', S(1)'W'(')k, o u  -- ~,z q~k,(i)Au (o) 

occ_~ ] 
- A  SlP. (45A/ 

All of the terms in this equation are non-singular. Thus, the second order change 
in the density matrix can be written in the following non-singular form which can 
be applied to problems where the zero order basis contains degenerate orbitals 

o c t  v a c  v a c  o c t  a l l  

-,,P(a)= 2 Z Z Z,V--ki"~U~uk • A ,--(0),-~(0).,..,,. 2 Z Zgik~Bki  (46A) 
i k l i k 

where, if both i and k are occupied 

[,~vac all q'(1) ~(1) "l- S(k2)] 

and if i occupied and k vacant 

co> i f ) +  - O k i  / t ~ ' i  / ~ k l  O l i  

l l 

o c ~  

-- 2 d ~(1) (48A) - O - k l O i l  �9 

l 

The calculation of p(2) must also be iterative because of the presence of ~(2) in 
Eq. (48A). However, it should be noted that the most complicated terms required 
for the evaluation of p(Z) need be calculated only once, prior to the start of the 
iterative calculation. In fact, the non-iterative contribution to p(2) may be used as a 
first guess to initiate the second order calculation. 
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